Message from the Center of Excellence

We are pleased to present the 2003 annual report for the Center of Excellence in Livestock Diseases and Human Health. We hope you enjoy this summary presentation of Center activities and accomplishments.

The Center’s faculty had a stellar year in all measures of productivity. Through the use of animal models, Center faculty have made prominent advancements in cancer biology, molecular pathophysiology, reproduction, host defense, and disease transmission. Center faculty have also made important advances in understanding infectious and other non-infectious livestock diseases.

We are pleased with the progress made by the Center’s faculty, and we are proud of the Center’s accomplishments. We are especially proud that one of the Center’s charter faculty members, David Brian, has been at the forefront of the effort to understand SARS.

The Center has expanded to include faculty in important areas of investigation relevant to the Center’s mission. Working cooperatively with the Food Safety Center of Excellence, the Center for Environmental Biotechnology, and the Departments of Microbiology, Nutrition, and Mechanical, Aerospace and Biomedical Engineering, the Center has contributed significantly to the research enterprise of the College of Veterinary Medicine, the Institute of Agriculture, and the University.

Support from the Center has been instrumental in building total external funding for its faculty in excess of $16.5 million with a 6:1 return on the State’s investment.

The Center and its investigators are always interested in establishing new projects and collaborations. Please contact us or any of the Center faculty if you have questions or interests.

Michael J. Blackwell, Dean
Robert N. Moore, Director
Contents

Program Report

Background ... 1
Research Funding .. 1
Equipment .. 1
Research Training .. 1
Student Research .. 1
Culture for Discovery ... 6
Personnel ... 7
Dissemination of Research ... 7
Accomplishments ... 8
Research Expenditures ... 9
Research Funded Externally ... 10

Future Plans .. 11

Faculty Reports

Animal Models and Comparative Medicine

Cancer Biology
Dr. Hildegard M. Schuller ... 13
Dr. Hwa-Chain Robert Wang .. 14
Dr. Howard K. Plummer, III .. 15

Molecular Pathophysiology
Dr. Mei-Zhen Cui .. 16
Dr. Patricia K. Tithof ... 17
Dr. Xuemin Xu ... 18

Infection, Immunity, Transmission
Dr. Barry T. Rouse ... 19
Dr. Pamela L.C. Small .. 20
Dr. Joseph W. Bartges .. 21

Reproduction
Dr. Hugo Eiler ... 22
Dr. S.M. Lilitha Carmindrani Mendis-Handagama .. 23
Autoimmunity
Dr. Diane V.H. Hendrix...24

Livestock Diseases and Toxicology
Coronaviruses
Dr. David A. Brian ...25
Dr. Barton W. Rohrbach...26

Virulence, Antibiotic Resistance, Diagnostics
Dr. Stephen P. Oliver ...27
Dr. Alan G. Mathew...28
Dr. C.A. Speer...29

Equine Gastric Ulcers
Dr. Nicholas Frank ...30

Tall Fescue Toxicosis
Dr. Jack W. Oliver ...31

Environmental Toxicology
Dr. Terry W. Schultz...32

Publications and Presentations..33

Table 1 Research Funded Externally58
Table 2 Faculty Benchmarks...63
Table 3 2004 Awards..64
COE Budget...66
Program Report

Introduction
The Center was created in 1984 to promote interdisciplinary activities designed to
- Improve the quality of human life through better animal health
- Expand livestock disease research capabilities in the College of Veterinary Medicine and the Institute of Agriculture
- Identify and characterize animal diseases that are similar to human disease
- Develop new strategies for the diagnosis, treatment, and prevention of disease

Background
Since 1984, the Center has developed successful programs that impact the understanding, treatment, and prevention of livestock and human diseases. These programs predominately focus on molecular and cellular approaches to research in
- Infectious Diseases/Population Medicine
- Toxicology
- Reproduction
- Host Defense
- Molecular Genetics
- Carcinogenesis

The Center has developed investigative strengths along innovative, sophisticated, and contemporary lines in two general areas:
1. Animal Models/Comparative Medicine
2. Livestock Diseases/Toxicology
These areas are each highly interrelated, and the Center plays a critical role in developing these focused areas of strength in both the College of Veterinary Medicine and Agricultural Sciences and Natural Resources.

Research Funding
The Center of Excellence in Livestock Diseases and Human Health supports investigators and promotes research through a variety of mechanisms. Although it is not a primary source of research funding, the Center facilitates established investigator’s efforts to maintain and expand their research programs and promotes new investigator’s potential to develop competitive research programs. The COE Advisory Committee reviews funding requests based on three main criteria: scientific merit, potential to lead to extramural funding, and relevance to the Center’s objectives. During fiscal year 2003 the Center awarded $431,090 in support of 19 projects.

Equipment
The Center promotes the research infrastructure of both the CVM and the Institute of Agriculture through the purchase and maintenance of essential research equipment. The COE Advisory Committee reviews equipment requests based on three criteria: justification of need, current availability of equipment, and number of investigators who may benefit. During fiscal year 2003 the Committee approved 3 pieces of equipment totaling $72,882. Investigators benefiting from these equipment grants were Drs. Mendis-Handagama, Frank, and Millis. In addition, the Center and CVM jointly obligated $50,000 for the purchase of...
micro-array instrumentation to be housed in the Department of Nutrition.

Research Training
The College of Veterinary Medicine funds at least 10 Ph.D. trainees with a professional medical degree. Some of these trainees are based in the Department of Pathology as part of their residency/PhD program while others are awarded without restriction. Many of these trainees eventually link with Center of Excellence faculty. These young investigators significantly bolster the achievements of the Center. Faculty benefiting from these trainees includes Drs. Brian, Rouse, Tithof, and Schuller.

Student Research
In an effort to promote biomedical research, the Center provides summer opportunities for veterinary students to perform research in laboratories within the College of Veterinary Medicine. During fiscal year 2003, The Center supported 15 first- and second-year students. This program has been quite successful. Several students have presented their work at national scientific meetings, and numerous manuscripts detailing the student’s work have been submitted for publication in refereed journals. Over the past five years approximately 40 manuscripts, several with students from this program as senior authors, were published in refereed journals.

The students involved in the summer research program and a brief description of their activities follow:

Julie Albright
From Brentwood, Tennessee, Julie Albright is a third year student in the professional curriculum. Prior to entering the CVM, Julie earned a Bachelor of Science degree in Psychology, with a concentration in neuroscience, from Vanderbilt University.

Julie conducted behavioral observations and used a computer program to record types and frequencies of behaviors while working with Dr. Ed Ramsay on a study of wolf-dog hybrids.

Julie is interested in a career as a behavior specialist.

Chris Bass
A second year student in the professional curriculum, Chris Bass is from Knoxville, Tennessee. Chris attended undergraduate school at Ouachita Baptist University in Arkadelphia, Arkansas, where he majored in Biology and minored in Chemistry.

Chris isolated messenger RNA and set up micro arrays while working with Dr. Legendre on a pilot study designed to better understand canine lymphomas.
Cary Bosworth is a third year student in the professional curriculum. A native of Newport News, Virginia, she attended undergraduate school at Vanderbilt University, where she majored in Math.

While working with Drs. Rebecca Seaman and David Edwards, Cary obtained fine needle aspirates from mast cell tumors and stained and evaluated slides for a study on agyrophilic nucleolar organizing regions and mast cell tumors.

Laura Brandt, from Jonesborough, Tennessee, is a second year student in the professional curriculum. Laura attended undergraduate school at East Tennessee State University where she majored in English and Spanish.

Under the direction of Dr. Nicholas Frank, Laura isolated messenger RNA from samples and conducted Northern blot analyses to determine gene expression for studies of obesity-associated laminitis in horses. Laura also assisted with data analysis during this project.

Stefanie Gagliardi is a second year veterinary student from Gaffney, South Carolina. Stefanie attended undergraduate school at Clemson University, where she majored in Animal and Veterinary Sciences.

Under the direction of Dr. Frank Andrews, Stefanie dissected stomach tissues from horses and prepared stomach tissues for histological evaluation while working on a study of the role of volatile fatty acids and calcium in equine gastric ulcers.

Chad Lothamer is a second year student in the professional curriculum. From Brentwood, Tennessee, Chad Lothamer is a second year student in the professional curriculum. Chad completed his undergraduate education at The University of Tennessee with a major in Animal Science.

While working with Dr. Melissa Kennedy, Chad used established techniques to amplify coronavirus genetic material from cheetah biologic samples and evaluated serologic assays during a study of feline coronavirus.
A second year student in the professional curriculum, Heather Robertson grew up in Madison, Tennessee and earned her undergraduate degree in Animal Science from Middle Tennessee State University.

Heather performed diagnostic tests and assisted with data analysis while working with Dr. Sharon Patton on a study of the development of parasite risk assessment and control strategies for captive breeding of Island Fox and Channel Island national Park.

Matt Rosenbaum grew up in Germantown, Tennessee. Prior to entering the CVM, he attended undergraduate school at The University of Tennessee, Chattanooga. Working with Dr. Mendis-Handagama, Matt isolated Leydig stem cells from neonatal-prepubertal rats for an on-going project concerning male contraception.

Once he has earned his DVM degree, Matt would like to do a residency in lab animal medicine or pathology.

Olya Smrkovski is a third year student in the professional curriculum. Originally from Moscow, Russia, Olya earned a degree in Geology from The University of Tennessee, Knoxville.

Based on her work with Dr. Stephen Kania, an abstract was submitted to and accepted by the 2003 Veterinary Cancer Society. Olya will present at an upcoming meeting in Wisconsin. After graduation, Olya would like to complete an internship and residency in Oncology.

Originally from Youngstown, Ohio, Julie Soppe attended undergraduate school at The University of Tennessee, Knoxville, where she majored in Animal Science and Science and Technology. Julie is a second year student in the professional curriculum.

Julie worked on a lipoprotein study with Dr. Nicholas Frank. Julie is currently evaluating data collected during the study in order to prepare a journal article.
A native of Cincinnati, Ohio, Ginger Takle is a third year student in the professional curriculum. Prior to entering the CVM, Ginger attended undergraduate school at Bowling Green State University where she majored in Biology.

Ginger worked with Dr. Cheryl Greenacre on a comparison response to cutaneous electrostimuli in iguanas administered various analgesics.

After completing a zoo internship and residency, Ginger aspires to become the Head Veterinarian at the San Diego Zoo.

David Toplon, a second year student in the professional curriculum, is originally from Nashville, Tennessee. He completed his undergraduate degree at Emory University in Atlanta, Georgia, majoring in Biology, Math, and Environmental Science.

During his work with Dr. Sharon Patton’s Channel Island Fox project, David identified and quantified parasites found in fecal samples, and he conducted an extensive literature review.

A native of Shelbyville, Tennessee, Melissa Vannatta is a third year student in the professional curriculum. Melissa completed her undergraduate work at The University of Tennessee, Knoxville, with a major in Agriculture and an emphasis in animal science.

Melissa worked with Dr. Darryl Millis to characterize differences in joint kinematics among animals walking on the ground, on a treadmill, and the underwater treadmill. Melissa is currently preparing a journal article based on her work during the summer.

Rebecca Wagner is a second year student from Cortland, New York. Rebecca attended Wells College in Aurora, New York, and majored in biological and chemical sciences with a concentration in biology.

Working with Dr. Karen Tobias, Rebecca conducted a retrospective study of dogs treated with acepromazine for seizures during the last five years. Rebecca is currently preparing a journal article based on her work with Dr. Tobias.
Originally from Louisville, Kentucky, Latisha Webb is a second year student in the professional curriculum. Latisha attended undergraduate school at Milligan College in Johnson City, Tennessee, where she majored in Biology and minored in Chemistry.

Under the direction of Drs. Nicholas Frank and Carla Sommardahl, Latisha performed endocrine testing procedures and analyzed samples for a study on the effect of synthetic hormone on thyroid hormone measures and energy metabolism in horses.

Culture for Discovery
In conjunction with the CVM graduate program in Comparative and Experimental Medicine, the Graduate School of Medicine, and the Departments of Microbiology and Animal Science, the Center sponsored a number of speakers through two biomedical seminar series: Mechanisms of Disease and Microbial Pathogenesis. These well-attended seminars, which presented contemporary research topics, were intended to foster a culture for discovery by stimulating discussion and interaction among students and faculty. The following is a list of guest speakers and seminar topics:

Marc Peters-Golden, MD
Lipoxygenases and Lung Disease
University of Michigan
School of Public Health
Assistant Professor, Environmental Sciences

Peter Mancuso, Ph.D.
Leptin Receptors and Macrophage Function
University of Michigan
School of Public health
Assistant Professor, Environmental Sciences

Bruce D. Levy, MD
Resolvins
Harvard Medical School
Associate Professor, Department of Pulmonary and Critical Care Medicine

Gopal Thinakaran, Ph.D.
Alzheimers Disease
University of Chicago
Associate Professor, Department of Neurobiology, Pharmacology

Pierre Borgeat, Ph.D.
Leukotriene B4
Director
Rheumatology & Immunology Research Center
Laval University, Quebec

Robert Langenbach, Ph.D.
Cox-1 and Cox-2 Knockout Mice
NIEHS
Laboratory of Environmental Carcinogenesis and Mutagenesis

Christina C. Leslie, Ph.D.
Phospholipase A2
National Jewish Center for Immunology and Respiratory Medicine
Professor, Department of Pediatrics

Matthew W. Breyer, MD
Prostaglandin Receptors
Vanderbilt University
Professor, Department of Physiology and Biophysics
Chris Minion, Ph.D.
Mycoplasma Get No Respect
Iowa State University
Associate Professor, Department of Veterinary Microbiology & Preventive Medicine

John Bannantine, Ph.D.
Genome Sequence of Mycobacterium avium subsp. Paratuberculosis
USDA-ARS
National Animal Disease Center

Jeannie Burton, Ph.D.
Host Immune Response to E. coli Mastitis
Michigan State University
Associate Professor, Department of Animal Science

Daniel Portnoy, Ph.D.
Cell Biology of Listeria Monocytogenes
University of California, Berkeley
Professor, Department of Molecular and Cell Biology

Michael Starnbach, Ph.D.
Cytotoxic T Cells and the Immune Response
Harvard University
Assistant Professor, Department of Microbiology and Molecular Genetics

Tom Schwan, Ph.D.
Borrelia burgdorferi and Tick Vectors
Rocky Mountain Laboratories
National Institute of Allergy and Infectious Diseases, NIH

Michael Doyle, Ph.D.
Epidemiology of E. coli 0157:H7 on Dairy Farms
University of Georgia
Professor and Director, Center for Food Safety

Personnel
Dr. Robert N. Moore, Professor and Associate Dean for Research and Graduate Studies, continues as Director of the Center.

The College of Veterinary Medicine has added a Director of Development, Dr. Claire Eldrige, to elevate the profile of the College and to increase support for programs throughout the College. Prior to joining the College, Dr. Eldrige served as vice chancellor for development and college relations at the University of Virginia’s College at Wise.

In order to keep the general public informed of accomplishments and on-going research, Ms. Sandra Harbison has been appointed media relations coordinator.

Dissemination of Research
In order to keep the general public informed of research accomplishments, CVM distributes a newsletter, Veterinary News, and a magazine, Veterinary Vision. Both of these publications carry features concerning on-going research activities and the results of concluded research studies. Research Activities, a link on the College website, gives an overview of the types of research conducted by CVM and COE faculty.

CVM also issues press releases to state, regional, and national media resulting in numerous television and print features on the College, many of which relate directly to research conducted through the Center. In addition, faculty are encouraged to share their research by speaking to professional groups, community groups, and civic groups.
In past years, the Center has highlighted accomplishments of individual investigators; however, beginning with fiscal year 2003 more aggressive advertisement of Center accomplishments was undertaken. This included a dramatic increase in visitors invited to the Center through cooperative presentation of 'invited speaker' courses in Microbial Pathogenesis and Mechanisms of Disease.

In addition, extensive mailing of this report is intended to increase public awareness of the Center and the accomplishments of its faculty. Lastly, in fiscal year 2005 the Center will participate substantially in the thirty year anniversary of the CVM which coincides with the twentieth anniversary of the Center.

Accomplishments

Core faculty within the Center continue to make excellent progress in on-going projects, gaining national and international recognition for their expertise and accomplishments. Details of faculty research are provided in Faculty Reports. Center accomplishments for the year 2002-2003 were excellent in terms of benchmarks and extramural funding base.

The 20 Center faculty averaged approximately 6 scientific and scholarly publications (116 total), and 3 invited presentations (50 total) at prestigious national and international meetings (Table 2). See Publications and Presentations for a complete listing of faculty benchmarks.

The return on the State’s investment in the Center as the ratio of expenditures from extramural funding to Center appropriation was 6:1 (Table 1).

<table>
<thead>
<tr>
<th>Extramural funding totaled $16,753,650; new grants totaled $3,051,422; return on investment 6:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extramural funding totaled $16,753,650; new grants totaled $3,051,422; return on investment 6:1</td>
</tr>
</tbody>
</table>

increasing $5.36 million this year. The total funding includes new multi-year awards to Drs. Rouse, Schuller, Brian, Cui, and S. Oliver totaling $3,051,422. See Research Expenditures and Research Funded Externally for data summary; details are provided in Table 1.
Research Expenditures

<table>
<thead>
<tr>
<th>Name</th>
<th>Federal</th>
<th>Industry</th>
<th>Foundation/Private</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joseph Bartges</td>
<td>0</td>
<td>$59,684</td>
<td></td>
<td>$59,684</td>
</tr>
<tr>
<td>David Brian</td>
<td>$202,590</td>
<td>0</td>
<td></td>
<td>$202,590</td>
</tr>
<tr>
<td>Mei-Zhen Cui</td>
<td>0</td>
<td>$32,262</td>
<td>$6,388</td>
<td>$38,650</td>
</tr>
<tr>
<td>Nicholas Frank</td>
<td>0</td>
<td>$24,600</td>
<td></td>
<td>$24,600</td>
</tr>
<tr>
<td>Charmi Mendis-Handagama</td>
<td>$55,164</td>
<td>0</td>
<td></td>
<td>$55,164</td>
</tr>
<tr>
<td>Darryl Millis</td>
<td>0</td>
<td>$154,258</td>
<td></td>
<td>$154,258</td>
</tr>
<tr>
<td>Jack Oliver</td>
<td>$21,109</td>
<td>0</td>
<td></td>
<td>$21,109</td>
</tr>
<tr>
<td>Stephen Oliver</td>
<td>0</td>
<td>$68,417</td>
<td></td>
<td>$68,417</td>
</tr>
<tr>
<td>Barry Rouse</td>
<td>$966,276</td>
<td>0</td>
<td></td>
<td>$966,276</td>
</tr>
<tr>
<td>Hildegard Schuller</td>
<td>$362,817</td>
<td>0</td>
<td></td>
<td>$362,817</td>
</tr>
<tr>
<td>Pamela L.C. Small</td>
<td>$462,494</td>
<td>0</td>
<td></td>
<td>$462,494</td>
</tr>
<tr>
<td>Patricia Tithof</td>
<td>0</td>
<td>$170,349</td>
<td>$60,828</td>
<td>$231,177</td>
</tr>
<tr>
<td>Hwa-Chain Wang</td>
<td>$72,755</td>
<td>0</td>
<td></td>
<td>$72,755</td>
</tr>
<tr>
<td>Xuemin Xu</td>
<td>$462,602</td>
<td>0</td>
<td></td>
<td>$462,602</td>
</tr>
</tbody>
</table>

Total Research Expenditures

$3,156,469

| State Appropriation | $516,000 |

The return on the State’s investment in the COE as the ratio of expenditures from external funding to COE appropriation is 6:1
Research Funded Externally

Joseph Bartges
- Federal: $0
- Industry: $270,639
- Foundation/Private: $59,684

Total: $330,323

David Brian
- Federal: $1,539,400
- Industry: $0
- Foundation/Private: $240,000

Total: $1,539,400

Mei-Zhen Cui
- Federal: $100,000
- Industry: $0
- Foundation/Private: $240,000

Total: $340,000

Nicholas Frank
- Federal: $0
- Industry: $10,010
- Foundation/Private: $0

Total: $10,010

Alan Mathew
- Federal: $0
- Industry: $72,434
- Foundation/Private: $0

Total: $72,434

Charmi Mendis-Handagama
- Federal: $69,750
- Industry: $0
- Foundation/Private: $0

Total: $69,750

Darryl Millis
- Federal: $0
- Industry: $397,416
- Foundation/Private: $0

Total: $397,416

Jack Oliver
- Federal: $0
- Industry: $264,003
- Foundation/Private: $0

Total: $264,003

Stephen Oliver
- Federal: $0
- Industry: $241,740
- Foundation/Private: $99,922

Total: $341,662

Barry Rouse
- Federal: $4,832,296
- Industry: $165,500
- Foundation/Private: $0

Total: $4,997,796

Hildegard Schuller
- Federal: $3,204,681
- Industry: $0
- Foundation/Private: $0

Total: $3,204,681

Pamela L.C. Small
- Federal: $2,018,127
- Industry: $0
- Foundation/Private: $0

Total: $2,018,127

C.A. Speer
- Federal: $0
- Industry: $20,000
- Foundation/Private: $0

Total: $20,000

Patricia Tithof
- Federal: $0
- Industry: $522,000
- Foundation/Private: $100,000

Total: $622,000

Hwa-Chain Wang
- Federal: $517,020
- Industry: $0
- Foundation/Private: $0

Total: $517,020

Xuemin Xu
- Federal: $0
- Industry: $1,960,468
- Foundation/Private: $0

Total: $1,960,468

Total External Funding: $16,753,650

Total COE-related external funding increased by 32% in FY 03 due to significant new grants and contracts awarded to COE faculty.

Of particular note are new multi-year awards to Drs. Rouse, Schuller, Brian, Cui, and S. Oliver which total $3,051,422.
The Center will continue to concentrate on developing newly recruited investigators while promoting initiatives to enhance its research capacity and direction.

In fiscal year 2004 the Center will expend $544,140 to fund 20 projects, including equipment, in the College of Veterinary Medicine and the College of Agricultural Sciences and Natural Resources (Table 3). This represents an increase of approximately $113,000 over the preceding year. The increased number of projects funded over the last two years represents a broadening interest in promoting food animal research and investing in companion animal research projects that relate directly to developing technologies applicable to human health. From fiscal year 2002 to fiscal year 2003, the investment in the increased number of projects has resulted in a 32% increase in extramural funding for Center related grants and contracts.

Further, the Center has entered into cooperative interactions with other units to enhance research that supports its objectives. These include a collaborative project between orthopedic surgeons in the Center and faculty in biomedical engineering and the joint hiring, with the Center for Environmental Biotechnology, of a research assistant professor to develop projects in environmental toxicology and pathophysiology. Initiatives to be developed are listed and explained as follows:

Homeland Security

Awareness of the vulnerability of the state and nation to bioterrorist and agroterrorist attacks has increased dramatically since the events of September 11, 2001. The Center in cooperation with the College of Veterinary Medicine will support public health oriented projects designed to support surveillance, intervention, and resolution of potential attacks directed against humans and food animals. In planned proposals to promote homeland defense, the Center will provide the infrastructure for agroterrorism research for the College of Veterinary Medicine.

Research Training/Opportunities for Collaboration

The Center will continue to increase its involvement in research training of veterinary students and graduate students by continuing to provide increased opportunities for summer internships, matching travel grants, and stipend upgrades to help recruit and retain top quality graduate students.

In fiscal year 2003 the Center cooperated substantially in the offering of “invited speaker” courses in Microbial Pathogenesis and Mechanisms of Disease. These courses increased national and international exposure of the Center’s faculty, students, and programs; and, at the same time, enhanced the potential for developing external collaborations for our faculty and postdoctoral opportunities for our students. This initiative was so well-supported by Center faculty that plans are to continue and to even expand Center participation in the offering of advanced graduate courses in 2004.

The Center will continue to participate conceptually and materially in strategic planning to develop areas of investigative strength in the College of Veterinary Medicine and the Institute of Agriculture.
Faculty Reports

Animal Models and Comparative Medicine

Cancer Biology
Dr. Hildegard Schuller
Dr. Hwa-Chain Robert Wang
Dr. Howard K. Plummer, III

Molecular Physiology
Dr. Mei-Zhen Cui
Dr. Patricia K. Tithof
Dr. Xuemin Xu

Infection, Immunity, Transmission
Dr. Barry T. Rouse
Dr. Pamela L.C. Small
Dr. Joseph W. Bartges

Reproduction
Dr. Hugo Eiler
Dr. S.M. Lilitha Charmindrani Mendis-Handagama

Autoimmunity
Diane V.H. Hendrix

Livestock Diseases and Toxicology

Coronaviruses
Dr. David A. Brian
Dr. Barton W. Rohrbach

Virulence, Antibiotic Resistance, Diagnostics
Dr. Stephen P. Oliver
Dr. Alan G. Mathew
Dr. C.A. Speer

Equine Gastric Ulcers
Dr. Nicholas Frank

Tall Fescue Toxicosis
Dr. Jack W. Oliver

Environmental Toxicology
Terry W. Schultz
Hildegard M. Schuller
D.V.M., Justus Liebig University, Giessen, Germany
Ph.D., College of Veterinary Medicine, Hannover, Germany
Distinguished Professor and Acting Head
Department of Pathobiology

Recent Publications

Regulatory Mechanisms in Lung Cancer
For over 20 years Dr. Schuller’s research has been dedicated to the study of lung cancer; her achievements have been recognized nationally and internationally. Dr. Schuller’s studies are designed to provide an in-depth understanding of the regulatory mechanism governing the growth of normal lung cells and the cancers arising from such cells.

Dr. Schuller has hypothesized that different lung cell types and different types of lung cancer may not be governed by the same regulatory mechanisms. Known risk factors may, in turn affect these regulatory mechanisms differently.

Dr. Schuller’s group has previously determined that nicotinic acetylcholine, a specific cell receptor with an important biological function, regulates growth of small cell lung carcinoma and the cell of origin for this cancer type, the pulmonary neuroendocrine cell. Dr. Schuller also found that NNK, a tobacco-specific carcinogenic product, activates this receptor with high affinity. This important finding links, for the first time, the stimulation of a specific receptor by a tobacco-specific toxicant with the activation of a series of cell-specific events that may result in uncontrolled growth. Dr. Schuller’s group is testing the hypothesis that substances that inhibit the re-uptake of serotonin will protect against the development and spread of small cell lung cancer.

The Center of Excellence and three grants from the National Institutes of Health support Dr. Schuller’s research.
Signatures of Tobacco Specific Carcinogen NNK in the Induction of Human Breast Cancer Cells

Breast cancer is one of the most prevalent human cancers among women in the United States with almost 180,000 women diagnosed with breast cancer each year. Epidemiological studies have suggested that exposure to tobacco substances increase the risk of developing human breast cancers. However, it is still unclear as to whether tobacco carcinogens are able to initiate the development of breast cancer or act with other environmental carcinogens to promote tumor formation.

Previous studies by Dr. Wang’s group have empirically verified, for the first time, that NNK, a tobacco specific carcinogen, is competent to play a role in initiating non-cancerous human breast epithelial cells into acquiring cancerous properties.

Dr. Wang’s group is currently engaged in an innovative study designed to understand the potential synergistic or additive effect of NNK with benzopyrene, another carcinogen, on the induction of the cellular transformation of non-cancerous breast cells. This study is innovative in that the signatures of NNK at its potential synergism with benzopyrene in breast carcinogenesis have not been addressed to date.

Understanding how carcinogens play a role in the induction of human breast cancer will allow researchers to develop strategies for cancer prevention.
Molecular Characterization of Beta-adrenergic Receptors and Potassium Channels in Breast Cancer

Breast cancer is the leading cancer in women. Studies in human cancer cell lines or in animal models have shown that the growth of a type of cancer called adenocarcinoma in the lungs, pancreas, and colon are under control of a cell surface receptor in the beta-adrenergic system.

Data from Dr. Plummer’s laboratory have indicated that similar to these cancers in other organs, growth of a subset of human breast cancers is under control of this same beta-adrenergic cell surface receptor-cellular signaling system. Dr. Plummer’s group has identified a functional link between the beta-adrenergic receptor pathway and the GIRK1 potassium channel in human breast cancer cell lines. Data from Dr. Plummer’s laboratory indicate that a carcinogen found in tobacco smoke, NNK, stimulates this system in breast cancer cells.

Dr. Plummer’s group is also investigating the functional association of GIRK1 with beta-adrenergic, arachidonic acid-mediated signal transduction. A high proportion of breast cancer cases demonstrate extensive metastatic spread, cancer relapse, and failure of existing therapies. In particular, estrogen non-responsive breast cancers have a poor prognosis. The expression of beta-adrenergic receptors has been correlated with the over expression of certain arachidonic acid-metabolizing enzymes in adenocarcinomas of lungs, colon, prostate, pancreas, and breast. Recent studies in Dr. Plummer’s laboratory indicate that three estrogen-responsive and three non-estrogen specific cell lines derived from human breast cancers demonstrate a significant reduction in DNA synthesis beta-adrenergic blockers and inhibitors of COX-2 and lipoxygenase.
Mei-Zhen Cui
Ph.D., Tokyo Institute of Technology, Japan
Assistant Professor
Department of Pathobiology

Recent Publications

Tissue Factor Involvement in Vascular Disease
Studies in Dr. Cui’s laboratory are directed towards understanding the molecular mechanism underlying vascular diseases, specifically atherosclerosis and thrombosis.

Dr. Cui’s group has found that thrombin activates protein kinase D (PKD) in vascular smooth muscle cells. These results reveal a novel function of PKCδ in mediating thrombin-induced PKD activation and identified PKD as a new component in thrombin-induced intracellular signaling pathway in smooth muscle cells.

Tissue factor, the initiator of the coagulation cascade, is expressed by cells in atherosclerotic lesions. Dr. Cui’s data have shown, for the first time, that lysophosphatidic acid (LPA), a component of oxidized lipoproteins and an agent released by activated platelets, markedly induces tissue factor messenger RNA, tissue factor protein, and tissue factor activity in vascular smooth muscle cells. Activation of MEKs and ERKs mediates LPA-induced TF expression. Dr. Cui’s results suggest that elevated LPA could be a thrombogenic risk factor.

Dr. Cui’s group is studying the regulation of tissue factor expression by components of oxidized low density lipoproteins and attempting to define the role of oxidized lipids in atherosclerosis and thrombosis.

The Center of Excellence, the American Heart Association, and a new grant from Pfizer support Dr. Cui’s Research.
Patricia K. Tithof
D.V.M., Michigan State University
Ph.D., Michigan State University
Associate Professor
Department of Pathobiology

Recent Publications

Molecular Mechanisms in Cardiovascular Disease
In the United States, cardiovascular disease kills almost as many people as all other causes of death combined, and the toll on the national economy exceeds $150 billion annually.

Dr. Tithof’s research in cardiovascular physiology concerns the effects of specific components of cigarette smoke on the biology of endothelial cells and the metabolism of arachidonic acid, a potent physiological messenger. Arachidonic acid is a fatty acid present in high quantities in the membranes of all cells and is a substrate for the production of eicosanoids, a family of biologically active lipid mediators that have an important role in atherosclerosis. The protective effects that these fatty acids and aspirin provide against smoking-induced atherosclerosis suggest that components of cigarette smoke stimulate the arachidonic pathway. However, previous studies have not focused on the specific components of cigarette smoke responsible for this effect.

Dr. Tithof’s group has demonstrated that compounds present in cigarette smoke in high concentrations induce endothelial cell apoptosis, a form of cell death. These compounds include polycyclic aromatic hydrocarbons (PAHs) and the nitrosated derivative of nicotine, NNK. Moreover, they have identified the signal transduction pathways involved in this effect. PAHs and NNK induce endothelial apoptosis by activating the arachidonic cascade, an important pathway that produces more than 100 biologically active mediators, many of which are involved in coronary artery disease. Though PAH compounds are known carcinogens, researchers do not yet clearly understand their role in the atherosclerotic process.

The Center of Excellence, Phillip Morris, and the American Heart Association support Dr. Tithof’s research.
Xuemin Xu
Ph.D., Institute of Technology, Nagatsuta, Yokohama 227 (Japan)
Associate Professor
Department of Pathobiology

Recent Publications

Molecular and Cellular Mechanisms of Alzheimer’s Disease
Following heart disease, cancer, and stroke, Alzheimer’s disease is the fourth major cause of death in the United States. The majority of the familial forms of Alzheimer’s disease (FAD) cases have been associated with mutations in presenilin-1 (PS1) and presenilin-2 (PS2). Accumulating evidence supports a role for presenilin in apoptosis, or programmed cell death, one of the mechanisms of neuronal cell death observed in Alzheimer’s disease.

Dr. Xu’s group identified a novel protein, presenilin-associated protein (PSAP), capable of inducing programmed cell death. Dr. Xu’s recent studies have revealed that PSAP is a mitochondrial molecule. Mitochondria play a central role in apoptosis. Because PSAP is a pro-apoptotic molecule and is localized in mitochondria, PSAP is well-positioned in regulating neuronal cell death in the brain.

Dr. Xu’s group is currently working to generate a null mice model in which the PSAP gene is knocked out; they will use this animal model to determine the normal biological function and the possible pathological function of PSAP in brain development and in neurodegenerative disease.

These on-going studies may lead to the identification of new therapeutic strategies for Alzheimer’s disease.

The Center of Excellence and the National Institutes of Health support Dr. Xu’s research.
Herpes Simplex Virus

Herpes simplex virus (HSV) infects up to 80% of the human population. HSV persists indefinitely in infected individuals, with some suffering painful periodic lesions. Such lesions occurring in the eye can cause a chronic inflammatory reaction, herpetic stromal keratitis (HSK), and often result in blindness. HSK is one of the leading infectious causes of vision impairment in the United States. Ongoing studies in Dr. Rouse’s laboratory are directed towards understanding the mechanisms by which herpes simplex infection causes blindness.

Dr. Rouse is working to understand how HSV interacts with the immune system. His aim is to understand how cells and molecular events set into play by HSV lead to chronic inflammatory lesions or resolution of the disease. Ultimately, it may be possible to manipulate host defenses to allow for protection by vaccine or lead to resolution of injury via substances introduced by gene transfer technology and capable of influencing the immune system.

Dr. Rouse is conducting studies to determine the mechanisms by which HSV infection results in angiogenesis and the role of a neurovascularization in HSV pathogenesis. Dr. Rouse is also working to define optimal means of inducing immunity against HSV.

Dr. Rouse’s group has generated national and international interest, and his laboratory is recognized as one of the premier viral immunology programs in the country.

The Center of Excellence and three grants from the National Institutes of Health support Dr. Rouse’s research.
Molecular Pathogenesis of Mycobacterial Infections

Mycobacterium ulcerans is the causative agent of Buruli ulcer, a severe, persistent necrotizing skin disease. Dr. Small’s group has identified a macrolide toxin, mycolactone, which is responsible for the immunosuppression and cell death in Buruli ulcer. In animal studies Dr. Small’s group has also shown that mycolactone can block the acute inflammatory response to other bacteria injected into the animal. Although mycolactone shares the anti-inflammatory and immunosuppressive properties of many macrolides, it is the first identified in a pathogenic organism.

Dr. Small’s group has constructed fluorescently labeled derivatives of mycolactone and has shown that mycolactone enters the cell by diffusion and accumulates in the cytosol. However, they have not yet identified a cellular target. Identifying a cellular target for mycolactone will be important in developing the pharmaceutical potential of the molecule.

Researchers know nothing about the genetics or gene expression of macrolides in mycobacteria. Dr. Small’s group is working to identify genes required for mycolactone production. Once Dr. Small’s group has identified genes for mycolactone, they will give high priority towards constructing a defined mutant that will be used as a basis for a vaccine against Buruli ulcer.

In addition, Dr. Small is collaborating with Drs. Stephen Oliver and C.A. Speer on *Mycobacterium paratuberculosis*. These studies are aimed at developing better diagnostic tools for *M. paratuberculosis* in cattle. The goal of this research is to determine the level of infection of *M. paratuberculosis* in Tennessee cattle, as well as ascertaining whether an epidemiological link exists between *M. paratuberculosis* and Crohn’s diseases in humans.

The Center of Excellence and the National Institutes of Health support Dr. Small’s research.
Joseph W. Bartges
D.V.M., University of Georgia
Ph.D., University of Minnesota
Professor
Department of Small Animal Clinical Sciences

Recent Publications

Zoonotic Enteric Bacteria Transmission
Dr. Bartges’ research focuses on urinary tract diseases, the effects of nutrition and health on disease, and zoonotic intestinal diseases. The Center of Excellence is currently supporting studies to determine whether or not dogs and cats with acute and chronic diarrhea serve as reservoirs for potentially pathogenic enteric bacteria.

Dogs and cats are an important component of human health; however, they may also serve as a source for zoonotic organisms. Physicians often recommend that immunocompromised people abandon their pets because of the potential for transmitting zoonotic diseases, especially enteric bacterial pathogens.

While there are several studies evaluating the prevalence of zoonotic bacteria in food production and wild animals, there are few such studies concerning dogs and cats. There are reports of dogs and cats transmitting zoonotic enteric bacteria to people with HIV infection, young children, the elderly, and cancer patients undergoing chemotherapy and/or radiation therapy.

Dr. Bartges hypothesizes that there exists a relationship between infected animals and human beings that share a common environment. This project is part of a larger funded research program examining zoonotic pathogens. Research in this area focuses on developing rapid screening tests used by health professionals; treatment protocols to eliminate the carrier state for these organisms; educational modules on pet ownership for children in grades K-12, lay organizations, and health professional organizations; and perhaps the study of companion animals as potential vectors for bio-terrorism.

Dr. Bartges currently holds the Acree Endowed Chair of Small Animal Research.
Dr. Hugo Eiler
D.V.M., University of Chile, Santiago, Chile
Ph.D., University of Illinois, Urbana
Professor
Department of Comparative Medicine

Recent Publications

Effect of Serotonin
Dr. Eiler’s research is focused in two areas: reproduction and veterinary endocrinology. In terms of reproduction, Dr. Eiler’s group is investigating how the fetus signals the mother that it is time for delivery. This involves the identification of endocrine signals, where they originate, and the way they function.

The core of Dr. Eiler’s working hypothesis is that the fetal intestine produces a hormone-like substance (serotonin) capable of regulating pregnancy. Serotonin is secreted into fetal blood from the fetal intestine. During pregnancy, fetal serotonin promotes the growth of the placenta. However, at the end of gestation, there is a withdrawal of serotonin from fetal blood which causes the arrest of placental growth and detachment of the placenta. A partial failure of this mechanism may cause retention of the placenta in the postpartum female. Identification of the site of failure may allow us to develop a new treatment for retained placenta not only in cows and mares, but also in women.

Dr. Eiler’s group is currently using the rabbit and the rat to develop a more conventional laboratory model that will facilitate the evaluation of the narcotic effect of serotonin. Serotonin reuptake inhibitors are widely used in the treatment of mood disorders, sleep disorders, and an increasing variety of psychotic conditions in both humans and animals.

The current hypothesis is that a sustained high concentration of serotonin in the synaptic cleft leads to remission of symptoms. This may be obtained by administration of serotonin uptake inhibitors such as fluoxetine. Dr. Eiler’s hypothesis is that administration of exogenous serotonin can also increase availability of serotonin to neurons. It is Dr. Eiler’s view that serotonin has the possibility of being either a substitute or a synergist for uptake inhibitors.
S.M. Lilitha Charmindrani Mendis-Handagama
D.V.M., The University of Sri Lanka, Peradeniya
Ph.D., Monash University, Australia
Associate Professor
Department of Comparative Medicine

Recent Publications

Male Fertility Regulation and Contraception

One aspect of Dr. Mendis-Handagama’s research focuses on finding the basic scientific information necessary to develop a reversible male contraceptive that maintains the normal androgen levels. Such a method will be an attractive alternative to the limited contraceptive methods currently available for men.

Andropause, or the reduced levels of circulating male hormones due to aging, is treated by testosterone/androgen therapy – the only treatment available. A limitation of hormone therapy is that androgen treatment is contraindicated in conditions such as cardiovascular and prostate disease, both common diseases in the aging male.

Recent studies in Dr. Mendis-Handagama’s laboratory, using a rat model, have revealed the potential of using thyroid hormone and luteinizing hormone (LH) in treating andropause, with no risks added to either cardiovascular or prostate disease. It is clear that thyroid hormone and LH have important regulatory function on testicular hormone production and spermatogenesis. However, researchers do not know the mechanism of action on testis function of thyroid hormone alone or in synergism with LH.

Dr. Mendis-Handagama’s group is currently investigating the interactions between the hypothalamo-pituitary-thyroid and hypothalamo-pituitary-testis loops associated with testicular function in the mammalian male. Results from these studies will be used to understand how luteinizing hormone (LH) and thyroid hormone could act synergistically to produce degeneration of mature male germ cells and rejuvenation of aged testes in terms of its hormone secretory function observed in rats during their previous studies.

The Center of Excellence and the World Health Organization support Dr. Mendis-Handagama’s research.
Efficacy of Topical Ocular Application of Tacrolimus

Both dogs and humans can develop a disease of decreased tear production, caused by an immune-mediated attack of the lacrimal gland. In humans, the disease is often part of a more systemic autoimmune disease, Sjögren’s syndrome. In dogs, Keratoconjunctivitis sicca (KCS) is a devastating and potentially blinding disease that can cause corneal ulceration and rupture as well as pigmentation and vascularization of the cornea.

The currently accepted therapy for KCS in dogs is cyclosporine (CSA) ointment. Problems associated with the use of CSA for KCS in dogs include a lack of response to CSA in up to 30% of dogs with KCS; a maximum duration of twelve hours action requiring twice daily topical therapy; and facial hair loss in some dogs treated with CSA. The most common treatment of dry eye in humans is symptomatic therapy consisting of applying ocular lubricants and surgically removing the lacrimal punctae.

Tacrolimus (TACRO) is an immunosuppressive agent similar to CSA but more potent. Dr. Hendrix has previously determined that TACRO is safe for dogs. Dr. Hendrix’s current hypothesis is that topical ophthalmic TACRO is an effective treatment of KCS in dogs, and may also be an effective treatment of Sjögren’s syndrome in humans.
David A. Brian
D.V.M., Michigan State University
Ph.D., Michigan State University
Professor
Department of Pathobiology

Recent Publications

Molecular Pathogenesis of Coronavirus
Coronavirus infections cause costly respiratory and gastroenteric diseases in livestock and fowl, and chronic, disabling diseases in humans.

The primary research focus in Dr. Brian’s laboratory is the molecular biology of coronavirus replication. Dr. Brian’s group is making an intense effort to understand how 5 separate genetic elements in the coronavirus function to regulate production of viral proteins and progeny virus. In an effort to understand the determinants of this process, Dr. Brian’s group is researching a sixth genetic region – a hot spot for variability. These studies could significantly impact the design of new therapeutic strategies.

Dr. Brian’s group has discovered a small genetic variant (a viral minigenome) of the bovine coronavirus that replicates in the presence of normal virus. They are experimentally engineering this minigenome to carry many kinds of potential antiviral molecules into cells. One molecule is an enzyme, a ribozyme, designed to destroy the polymerase gene – the gene on which the virus depends for replication. This novel therapeutic approach would, in theory, cure a virus-infected cell without killing it.

Dr. Brian’s laboratory has received national and international recognition for fundamental discoveries regarding the basic molecular biology of viruses. Dr. Brian’s expertise recently placed him at the forefront of the efforts to understand severe acute respiratory syndrome or SARS, a member of the coronavirus family. Dr. Brian recently received supplemental funding from the National Institutes of Health for further SARS studies.

The Center of Excellence and the National Institutes of Health support Dr. Brian’s research.
Barton W. Rohrbach
V.M.D, University of
Pennsylvania
M.P.H., The Johns Hopkins
University
Associate Professor
Department of Large Animal
Clinical Sciences

Recent Publications
Rohrbach BW. Q-Fever. In:
Fraser CM, ed. *The Merck
Rahway, New Jersey: Merck and

Frank LA, Rohrbach BW, Bailey EM, West JR, Oliver JW. Steroid hormone concentration
profiles in healthy intact and neutered dogs before and after cosyntropin administration.
Domest Anim Endocrinol 2003 Jan;24(1):43-57

Effect of Intranasal Administration of Modified Live, Oral Vaccine against Bovine Coronavirus

Morbidity due to undifferentiated bovine respiratory disease (UBRD) in recently weaned calves in commercial
backgrounding operations ranges from 30-80% and mortality from 1-2%. There is speculation that BCV may have a
causative role in UBRD. The majority of cases of UBRD occur during the first 28
days in backgrounded calves.

A modified live attenuated coronavirus vaccine is currently licensed for oral use to
prevent enteric disease in newborn calves. Dr. Rohrbach and his collaborators are
conducting a randomized clinical trial to determine whether intranasal use of this
vaccine will cause a reduction of UBRD in recently weaned calves.

The vaccine under study contains attenuated strains of bovine rotavirus and
bovine coronavirus. It is given orally to newborn calves to stimulate rapid mucosal
immunity. Isolates of bovine coronavirus from the respiratory and intestinal tracts of
cattle are indistinguishable. It is reasonable to assume that this same type
of rapid mucosal immunity would be simulated in the respiratory tract of naïve
calves.

Results of this study may provide evidence for use of a vaccine to reduce morbidity
from UBRD and help clarify the
relationship between bovine coronavirus and UBRD.
Stephen P. Oliver
Ph.D., The Ohio State University
Professor
Department of Animal Science

Recent Publications

Pathogens in Bovine Mastitis
Mastitis costs dairy producers in the United States over $2 billion annually. Losses attributable to mastitis may cost Tennessee dairy producers more than $25 million annually. Mastitis in dairy cows is quite likely the most costly disease affecting dairy producers in Tennessee, the United States, and countries throughout the world.

Dr. Oliver’s group has been conducting studies designed to identify virulence factors produced by certain mastitis organisms (Streptococcus species) and implications of immunity to them. Dr. Oliver’s group has been working to develop more accurate and better-defined strategies for controlling these mastitis pathogens.

Other studies by Dr. Oliver’s group have determined that Streptococcus uberis and Streptococcus dysgalactiae readily adhere to and invade cells lining the bovine udder. When cultured in the laboratory and in the presence of epithelial cells, mastitis pathogens synthesize proteins not detected when bacteria are cultured alone. It is likely that these unique proteins are involved in virulence of bacteria, including their capacity to adhere to and invade mammary epithelial cells. Culturing mastitis pathogens in the laboratory and in the presence of epithelial cells may result in expression of bacterial virulence factors similar to that which occurs in the animal. This important discovery will be exploited to develop vaccines and manage mastitis.

Dr. Oliver’s expertise in mastitis and milk quality has led to a new research initiative in food safety. In addition, Dr. Oliver has increased awareness regarding the importance of environmental pathogens in bovine mastitis. Further, Dr. Oliver has discovered fundamentally important information critical to controlling the heterogeneous organisms that cause mastitis.

The Center of Excellence and several contracts support Dr. Oliver’s research.
Alan G. Mathew
Ph.D., Purdue University
Professor and Head
Department of Animal Science

Recent Publications

Bacterial Antibiotic Resistance

Some evidence suggests that agricultural use of antibiotics may be partly responsible for drug-resistant bacteria, which in turn may decrease the efficacy of similar antibiotics used in human medicine.

In their efforts to characterize genetic factors that lead to antibiotic resistance in animal and human pathogens in order to formulate effective control strategies, Dr. Mathew’s group has generated much interest nationally and internationally.

Dr. Mathew’s group is also investigating how different uses of antibiotics in livestock and pets affect antibiotic resistance patterns, concentrations, and shedding of food borne pathogens. Dr. Mathew’s findings include the determination that the penta-resistance gene and integron sequence normally associated with *Salmonella* Typhimurium DT104 is widespread among other isotopes of salmonella associated with livestock. This extremely important finding indicates that other subtypes of this pathogen may make control through therapeutics difficult in the future.

Dr. Mathew’s group has also determined that Class I integrons are common in non-pathogenic enteric bacteria, suggesting that these genes, which are important in the development, persistence, and spread of multi-resistant strains of bacteria, may ultimately spread to important pathogens. In further studies, Dr. Mathew’s group has characterized management factors and antibiotic dosing regimens that reduce the prevalence of resistant bacteria, thus allowing the development of effective control strategies.

The Center of Excellence, Iams, and the National Pork Board support Dr. Mathew’s research.
C.A. Speer
Ph.D., Utah State University
Distinguished Professor, Cellular and Molecular Immunology
Department of Forestry, Wildlife and Fisheries

Recent Publications

Diagnosis and Vaccination of Johne’s Disease
Johne’s disease is one of the three most important diseases of beef and dairy cattle in the United States with economic losses of more that $250 million annually. Johne’s disease, induced by *Mycobacterium avium* subsp. *Paratuberculosis* (MPTB), is manifested as a chronic wasting disease. Recent evidence implicates MPTB as the etiologic agent of Crohn’s disease in humans. Researchers suspect that MPTB is transmitted to humans via certain dairy products.

Although several diagnostic assays are available for MPTB, they are time-consuming, labor intensive and unreliable. The nature of MPTB infections has made it inordinately difficult to develop a sensitive and reliable diagnostic test. However, there is hope of developing a highly sensitive and specific diagnostic test based on antigen 85, a protein which is shed early in the blood of animals acutely infected with MPTB. Antigen 85 consists of a highly conserved complex of three fibronectin-binding proteins secreted by *Mycobacterium*-infected macrophages during infection by *M. tuberculosis*, *M. bovis*, and MPTB.

The preliminary data from studies conducted by Dr. Speer and his collaborators indicated that monoclonal antibody technology might eventually lead to a reliable diagnostic test for the early detection of MPTB infection in ruminants. With further research, such a test might also be used for identifying contaminated dairy products as well as for diagnosing Crohn’s disease in humans.

The Center of Excellence and the USDA support Dr. Speer’s research.
Nicholas Frank
D.V.M., Purdue University
Ph.D., Purdue University
Assistant Professor, Large
Animal Clinical Medicine
Department of Large Animal
Clinical Sciences

Recent Publications
Frank N, Sojka JE, Patterson
BW, Wood KV, Bonham CC,
Latour MA. Effect of
hypothyroidism on kinetics of
metabolism of very-low-density

Frank N, Sojka JE, Latour MA. Effects of hypothyroidism and withholding of feed on
plasma lipid concentrations, concentration and composition of very-low-density lipoprotein,
and plasma lipase activity in horses.

Frank N, Sojka JE, Messer NT. Equine thyroid dysfunction. *Vet Clin N Am Equine Pract*
2002;18:1-15

Equine Gastric Ulcer Disease
In the United States, owners spend $15 billion annually to maintain over 5.2 million horses. The horse industry
contributes $25.3 billion to the gross
domestic product; racing accounts for $7.4 billion of this figure.

The economic impact of Equine Gastric Ulcer Syndrome (EGUS) in horses is not known; however, researchers estimate
prevalence to be from 25 to 81 percent. Clinical signs of EGUS include poor
performance, colic, and weight loss. Severe cases of EGUS can result in death due to hemorrhage and gastric rupture.

Racehorses fed high concentrate (grain) diets may be more likely to develop gastric ulcers due to byproducts and volatile fatty acids (VFAs) that are produced when
these diets are fermented by resident bacteria. Because the concentration of
stomach acid is high, these VFAs may
cause damage and gastric ulcer when absorbed through the stomach wall.

Dr. Frank’s group has determined that
certain acids as well as a low PH are
important factors in the development of
gastric ulcers in horses fed high
concentrate diets. Dr. Frank hypothesizes
that feeding horses diets rich in rice bran
oil (RBO) will reduce the severity of
gastric ulcers and significantly alter gastric
and circulating lipids in horses; and that
adding RBO to the diet will reduce gastric
VFA concentrations, lower gastric ulcer
scores, and alter measured blood lipid and lipoprotein parameters.

The Center of Excellence and Lloyd, Inc. support Dr. Frank’s research.
Jack W. Oliver
D.V.M., Purdue University
Ph.D., Purdue University
Professor, Veterinary Pharmacology
Department of Comparative Medicine

Recent Publications

Tall Fescue Toxicity
Tall fescue, a forage crop, is grown on more than 34 million acres of pastures. More than 75% of these pastures are infested with the endophyte *Neotyphodium coenophialum*. Tall fescue toxicosis is a condition that results from the consumption of tall fescue infected with *Neotyphodium coenophialum*. Tall fescue toxicosis is a costly disease to animal producers; annual losses attributable to tall fescue toxicosis exceed $1 billion in the United States and $100 million in Tennessee.

Dr. Oliver is working to prevent the health problems in herbivores that consume tall fescue while maintaining the drought and insect resistance that the fungus conveys to the plant. Dr. Oliver and his collaborators have made many advances in the field including the development of a patented anti-fescue toxicosis vaccine. Previous studies by Dr. Jack Oliver’s group established that vascular change occurs when herbivores consume infected tall fescue. The abnormalities in blood flow are integrally related to the economic losses encountered by the cattle industry in the United States and in other countries.

Recent studies have focused on amino acid changes in the sera of steers that graze infected tall fescue. These studies show a tendency for arginine deficiency and a change in the nitric oxide pathway in steers that graze infected tall fescue. Dr. Oliver’s group is currently studying the effect of arginine deficiency on the reproductive function of bulls, steers, and heifers.

The Center of Excellence and the USDA support Dr. Oliver’s research.
Terry W. Schultz
Ph.D., The University of Tennessee
Professor
Department of Comparative Medicine

Recent Publications

Environmental Toxicant Testing and Modeling
Under the direction of Dr. Terry Schultz, research in the Biological Activity Testing and Modeling Laboratory focuses on developing structure-activity models and computer-aided, knowledge-based systems that predict toxic potencies from molecular structure. This research is significant in that hazard assessments can be conducted while conserving time, resources, personnel, and animals.

Dr. Schultz’s group has developed one of the largest single-endpoint databases for xenoestrogens in the world. From these data, Dr. Schultz and his collaborators from around the world have developed mathematical models that rapidly predict toxic potency from molecular structure. Dr. Schultz’s group has also developed a strategy for formulating valid quantitative structure-activity relationships (QSARS), which at the same time minimize the number of toxicological data points required. Dr. Schultz’s group continues to work towards standardizing the methods for determining the quality of a toxicity model.

Dr. Schultz’s group is currently involved in studies designed to provide fundamental toxic potency and molecular descriptor knowledge for the development and use of QSARS to predict the toxicity of organic chemicals. In this study, Dr. Schultz’s group is studying compounds such as acrylates and methacrylates, which are among the more prevalent industrial organic chemicals in the world. The results of this study will be valuable to industry and regulatory agencies throughout the world.

Also noteworthy is that during the last three years, 18 publications with significant student contribution (14 publications with students as first or second author) have resulted directly from the Center’s support of Dr. Schultz’s research.
Publications and Presentations

Joseph W. Bartges

David Brian

Department of Virology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands (January, 2003)

Department of Microbiology, College of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands (January, 2003)

Mei-Zhen Cui

Cui, M.-Z., and Xu, X. Lysophosphatidic Acid, Tissue Factor and Atherosclerosis, Aug. 2003, International Atherosclerosis Society Website

Cui, M.-Z., Essam Laag, Guojun Zhao and Xuemin Xu, Lysophosphatidic Acid induces Egr-1 Expression in Vascular Smooth Muscle Cells. 2003 Atorvastatin Research Award Summit Meeting (Salt Lake City, UT, Feb. 7-9, 2003)

Hugo Eiler

Nicholas Frank

M. Lilitha Charmindrani Mendis-Handagama (Charmi)

Institute of Anatomy II, Heinrich Heine Universitat Dusseldorf, Dusseldorf, Germany, “Postnatal Leydig Cell Differentiation”.

The Institute of Hormone and Fertility Research, Hamburg, Germany, “Postnatal Leydig Cell Differentiation”.

Department of Preclinical Sciences, The University of Glasgow, U.K. “Leydig Cell Differentiation in the Postnatal Testis”.

M.R.C. Reproductive Biology Unit, The University of Edinburgh, U.K.“Thyroid Hormone and Anti-Mullerian Hormone Regulation of Postnatal Leydig Cell Differentiation”.

36
University of Otago, Dunedin, New Zealand “Our New Findings on Leydig Cell Differentiation in the Postnatal Testis.”

Diane V. H. Hendrix

Hendrix DVH, Rohrbach BW, Bochsler PN, English RV. Histologic findings and persistence of Blastomyces dermatitidis in the eyes of dogs treated with systemically administered itraconazole. *Journal of the American Veterinary Medical Association*. In Press.

Alan G. Mathew

Ebner, P. D. and A. G. Mathew. 2002. Examination of class I integrons in E. coli isolated from pigs on U.S. swine farms that use or exclude antibiotics. Annual meeting of the International Association for Food Protection, San Diego, CA.

Jack W. Oliver

Stephen Paul Oliver

Hockett, M. E., N. R. Rohrbach, R. A. Almeida, H. E. Blackmon, F. Scenna, S. P. Oliver, and F.N. Schrick. 2002. Effects of experimentally-induced clinical mastitis during the preovulatory period on endocrine function, follicular growth and

Presented invited lecture entitled “Dairy cattle management practices” at the Tissue Residues & Strategies for Case Development Course, Food and Drug Administration, Office of Regulatory Affairs, Division of Human Resource Development Training and Development Team and the Center for Veterinary Medicine, Knoxville, TN, September, 2002.

Presented invited paper entitled “Research and educational programs of The University of Tennessee Food Safety
Center of Excellence” at The Food Safety Summit, The University of Minnesota, October, 2002.

Presented a seminar entitled “Mastitis and dairy food safety research at The University of Tennessee” at the 1st Annual Tennessee Dairy Advisory Board Meeting, Nashville, TN, November, 2002.

Presented two invited seminars entitled “SUAM: An important virulence factor of Streptococcus uberis” and “Development of a Streptococcus uberis intramammary challenge model” at Pfizer Veterinary Medicine Biological Discovery Animal Health Group, Groton, CT, February, 2003.

Presented invited seminar entitled “Research and educational opportunities at The University of Tennessee Food Safety Center of Excellence” to the Department of Food Science, Cornell University, Ithaca, NY, March, 2003.

Invited participant on a panel discussion entitled “Creating and working with successful competitive grant teams” at The University of Tennessee Institute of Agriculture Workshop on Partnerships for Grant & Contract Funding, Knoxville, TN, May, 2003.

Presented invited talk on “Entrepreneurial activities of The University of Tennessee Food Safety Center of Excellence” at The University of Tennessee Research Foundation/Tech 2020 Center for Entrepreneurial Growth Symposium, Knoxville, TN May, 2003.

Presented two invited talks entitled “Research on mastitis prevention and control” and “On-farm food safety research conducted at the UT Food Safety Center of Excellence” at the National Ag in the Classroom Teachers Conference, Middle Tennessee Experiment Station, Spring Hill, TN, June, 2003.

Presented invited seminar entitled “Research and educational opportunities at The University of Tennessee Food Safety Center of Excellence” to the Department of Food Science, Cornell University, Ithaca, NY, March, 2003.

Presented two invited seminars entitled “SUAM: An important virulence factor of Streptococcus uberis” and “Development of a Streptococcus uberis intramammary challenge model” at Pfizer Veterinary Medicine Biological Discovery Animal Health Group, Groton, CT, February, 2003.

Presented invited lecture entitled “Dairy cattle management practices” at the Tissue Residues & Strategies for Case Development Course, Food and Drug Administration, Office of Regulatory Affairs, Division of Human Resource Development Training and Development Team and the Center for Veterinary Medicine, Knoxville, TN, September, 2002.

Howard K. Plummer III

Barton Wing Rohrbach

Frank LA, Hnilica KA, Rohrbach BW, Oliver JW. Retrospective evaluation of sex hormones and steroid hormone intermediates in dogs with alopecia. *Vet Dermatol* 2003 Apr;14(2):91-7

Tobias KM, Rohrbach BW. Association of breed with the diagnosis of congenital portosystemic shunts in dogs: 2,400 cases (1980-2002). In Press *JAVMA*.

Hendrix DVH, Rohrbach BW, Boschler PN. Histologic Findings and Persistence of Blastomyces dermatitidis in the Eyes of Dogs Treated with Systemically Administered Itraconazole. In Press *JAVMA*.

Reinemeyer CR, Farley AW, Kania SA, Rohrbach BW, Dressler RH. A prevalence survey of antibodies to Anoplocephala perfoliata in horses from the United States. WAAVP and AAVP meetings;

Barry T. Rouse

Hildegard M. Schuller

Terry Wayne Shultz

Structure-Activity Relationships.”
Bournemouth, England.

Pamela L.C. Small

Patricia K. Tithof

Shoieb AM, Elgayyar M, Dudrick PS, Bell JD, Tithof PK. *In vitro* inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. *Int. J. Oncol.* 22: 107-113

Elgayyar M, Schultz T, Guan W, Menn FM, Vulava V, Sayler G, Tucker D, Leslie CC, Tithof PK. Environmental pollutants activate phospholipase A2 isoforms and induce apoptosis of human coronary artery

Tithof PK, Elgayyar M, Lu KP, Ramos K. Distinct isoforms of calcium-independent phospholipase A$_2$ (iPLA$_2$) are responsible for apoptosis of endothelial cells induced by 1-methylanthracene (1-MA) and phenanthrene (PA). *The Toxicologist* 66(1-S): 281.

Hwa-Chain Robert Wang

Xuemin Xu

<table>
<thead>
<tr>
<th>Project Director</th>
<th>Title of Grant</th>
<th>Funding Agency</th>
<th>Total Award</th>
<th>Expenditures 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joseph Bartges</td>
<td>Evaluation of A Pet Anti-Aging Wellness System</td>
<td>eBrands</td>
<td>$75,700</td>
<td>$4,184</td>
</tr>
<tr>
<td></td>
<td>Studies on Urate Urothithiasis in Dalmations: Prevalence of Kidney Stones, Survey of Dalmation Owners</td>
<td>Dalmation Club</td>
<td>$59,684</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>Nutrition Technician</td>
<td>Nestle Purina</td>
<td>$107,150</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>Comparisons of 2 Dietary Approaches to Managing Canine Chronic Renal Failure</td>
<td>Iams</td>
<td>$74,289</td>
<td>$18,795</td>
</tr>
<tr>
<td></td>
<td>APR Studies</td>
<td>Hill’s pet Nutrition</td>
<td>$13,500</td>
<td>$10,583</td>
</tr>
<tr>
<td>David Brian</td>
<td>Mechanisms of Coronavirus RNA Amplification</td>
<td>NIH</td>
<td>$1,539,400</td>
<td>$202,590</td>
</tr>
<tr>
<td>Mei-Zhen Cui</td>
<td>Scientist Development Award</td>
<td>American Heart Association</td>
<td>$240,000</td>
<td>$6,388</td>
</tr>
<tr>
<td></td>
<td>Lipid Lysophosphatidic Acid Regulation of Transcription Factor Egr-1 in Vascular Smooth Muscle Cells</td>
<td>Pfizer</td>
<td>$100,000</td>
<td>$32,262</td>
</tr>
<tr>
<td>Project Director</td>
<td>Title of Grant</td>
<td>Funding Agency</td>
<td>Total Award</td>
<td>Expenditures 03</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Nicholas Frank</td>
<td>Effect of Oral Levothyroxine on Thyroid Hormone Status and Energy Metabolism in Horses</td>
<td>Llyod, Inc</td>
<td>$10,010</td>
<td>$24,600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5/13/03 – 5/14/04</td>
<td></td>
</tr>
<tr>
<td>Alan Mathew</td>
<td>Effect of Diet on Microflora of Dogs</td>
<td>Iams</td>
<td>$72,434</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/23/01 – 7/01/02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect of Egg Yolk Antibodies and Antibiotic Regimens on Shedding of Salmonella Typhimurium</td>
<td>National Pork Board</td>
<td>$48,560</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5/1/03 – 5/1/04</td>
<td></td>
</tr>
<tr>
<td>Charmi Mendis-Handagama</td>
<td>Antispermatogenic Effects of Luteinizing and Thyroid Hormones in Three-Month-Old Sprague Dawley Rats</td>
<td>World Health Organization</td>
<td>$69,750</td>
<td>$55,164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12/1/01 – 11/30/03</td>
<td></td>
</tr>
<tr>
<td>Darryl Millis</td>
<td>Multi-Center Clinical Study of the Effect of an Investigational Drug on Chronic Pain in Dogs with Osteoarthritis</td>
<td>Novartis</td>
<td>$249,789</td>
<td>$66,212</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/30/00 – 12/1/03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Effect of Milk Ultrafiltration Fraction on Osteoarthritis in Dogs</td>
<td>Iams</td>
<td>$55,183</td>
<td>$88,046</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10/1/00 – 12/1/02</td>
<td></td>
</tr>
<tr>
<td>Jack Oliver</td>
<td>Reactivity of Bovine Vasculature to Ergovaline and Erfine of Toxic Tall Fescue</td>
<td>USDA</td>
<td>$264,003</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9/1/97 – 9/30/02</td>
<td></td>
</tr>
<tr>
<td>Project Director</td>
<td>Title of Grant</td>
<td>Funding Agency</td>
<td>Total Award</td>
<td>Expenditures 03</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Stephen Oliver</td>
<td>Recurrent Coliform Mastitis in New York Dairy Cows</td>
<td>Cornell University</td>
<td>$99,922</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>Efficacy of Extended Ceftiofur Therapy for Treatment of Naturally Occurring Subclinical Mastitis in Lactating Dairy Cows</td>
<td>Pharmacia & Upjohn</td>
<td>$200,112</td>
<td>$47,172</td>
</tr>
<tr>
<td></td>
<td>Efficacy of Masticide for the Treatment and Prevention of Teat Lesions During the Winter Months</td>
<td>Sporicidin International</td>
<td>$41,628</td>
<td>$21,245</td>
</tr>
<tr>
<td>Barry Rouse</td>
<td>Immunity Mechanisms in Herpes Virus Infections</td>
<td>NIH</td>
<td>$1,656,250</td>
<td>$294,970</td>
</tr>
<tr>
<td></td>
<td>Mechanisms of Herpetic Stromal Keratitis</td>
<td>NIH</td>
<td>$1,779,700</td>
<td>$290,285</td>
</tr>
<tr>
<td></td>
<td>Vaccination Against Herpes Simplex Virus</td>
<td>NIH</td>
<td>$1,396,346</td>
<td>$381,021</td>
</tr>
<tr>
<td></td>
<td>Biodelivery Sciences</td>
<td>Biodelivery Sciences</td>
<td>$12,000</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>Herpes Zosterfication</td>
<td>Smith-Kline Biological</td>
<td>$127,746</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>HSV Zosterform Model</td>
<td>Mohave Therapeutics</td>
<td>$25,754</td>
<td>$0</td>
</tr>
<tr>
<td>Project Director</td>
<td>Title of Grant</td>
<td>Funding Agency</td>
<td>Total Award</td>
<td>Expenditures 03</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Hildegard Schuller</td>
<td>Transplacental Pancreatic Carcinogenesis by NNK</td>
<td>NIH</td>
<td>$1,158,400</td>
<td>$59,230</td>
</tr>
<tr>
<td></td>
<td>NNK, Beta-Adrenergic AA Release and Lung Cancer</td>
<td>NIH</td>
<td>$1,142,201</td>
<td>$287,786</td>
</tr>
<tr>
<td></td>
<td>Preclinical Model for Chemoprevention of NSLC in Former Smokers</td>
<td>NIH</td>
<td>$868,800</td>
<td>$14,584</td>
</tr>
<tr>
<td>Pamela L.C. Small</td>
<td>Assistance in Analysis and Characterization</td>
<td>UT-Battelle</td>
<td>$38,280</td>
<td>$1,267</td>
</tr>
<tr>
<td></td>
<td>Mycolactone-mediated Virulence in Mycobacterium ulcerans</td>
<td>NIH</td>
<td>$2,018,127</td>
<td>$462,494</td>
</tr>
<tr>
<td>C.A. Speer</td>
<td>Study of Johne’s Disease</td>
<td>USDA</td>
<td>$20,000</td>
<td>$0</td>
</tr>
<tr>
<td>Patricia K. Tithof</td>
<td>Role of Arachidonic Acid in Endothelial Cell Apoptosis Induced by Tobacco Components</td>
<td>Philip Morris</td>
<td>$522,000</td>
<td>$170,349</td>
</tr>
<tr>
<td></td>
<td>Role of Phospholipase-Mediated Release of Arachidonic Acid in Apoptosis of Endothelial Cells Exposed to Tobacco Products</td>
<td>American Heart Association</td>
<td>$100,000</td>
<td>$60,828</td>
</tr>
<tr>
<td>Project Director</td>
<td>Title of Grant</td>
<td>Funding Agency</td>
<td>Total Award</td>
<td>Expenditures 03</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Hwa-Chain Robert Wang</td>
<td>Pathway Leads to Apoptosis in SRC</td>
<td>NIH</td>
<td>$517,020</td>
<td>$72,755</td>
</tr>
<tr>
<td></td>
<td>Transformed Cells</td>
<td></td>
<td>1/1/99 – 12/31/03</td>
<td></td>
</tr>
<tr>
<td>Xuemin Xu</td>
<td>Role of Apolipoprotein in AD Amyloid</td>
<td>NIH</td>
<td>$677,968</td>
<td>$48,272</td>
</tr>
<tr>
<td></td>
<td>Formation</td>
<td></td>
<td>5/1/99 – 5/30/03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Role of a Novel protein (PSAP) in</td>
<td>NIH</td>
<td>$1,282,500</td>
<td>$414,300</td>
</tr>
<tr>
<td></td>
<td>Neurodegeneration</td>
<td></td>
<td>9/1/01 – 8/31/05</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$16,753,650</td>
<td>$3,156,469</td>
</tr>
</tbody>
</table>
TABLE 2

FACULTY BENCHMARKS

<table>
<thead>
<tr>
<th>Publications and Presentations</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articles</td>
<td>116</td>
</tr>
<tr>
<td>Books or Book Chapters</td>
<td>11</td>
</tr>
<tr>
<td>Published Proceedings</td>
<td>17</td>
</tr>
<tr>
<td>Total Publications</td>
<td>144</td>
</tr>
<tr>
<td>Abstracts</td>
<td>70</td>
</tr>
</tbody>
</table>

Invited Presentations at:
National Meetings 24
International Meetings 26

Faculty in Center 20
TABLE 3

COE AWARDS
Fiscal Year 2004

<table>
<thead>
<tr>
<th>Investigator</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Brian</td>
<td>Pathobiology</td>
</tr>
<tr>
<td>Molecular Pathogenesis of Corona Virus</td>
<td></td>
</tr>
<tr>
<td>Mei-Zhen Cui</td>
<td>Pathobiology</td>
</tr>
<tr>
<td>The in-vivo Role of Lysophosphatidic Acid in the Development of Atherosclerosis</td>
<td></td>
</tr>
<tr>
<td>Nicholas Frank</td>
<td>Large Animal Clinical Sciences</td>
</tr>
<tr>
<td>Effect of Obesity on Physiological Parameters of Energy Metabolism in Horses</td>
<td></td>
</tr>
<tr>
<td>Diane Hendrix</td>
<td>Small Animal Clinical Sciences</td>
</tr>
<tr>
<td>Efficacy of Topical Ocular Application of Tacrolimus</td>
<td></td>
</tr>
<tr>
<td>Charmindrani Mendis-Handagama</td>
<td>Comparative medicine</td>
</tr>
<tr>
<td>EDS Hamster Model to Understand the Effects of Light and Thyroid Hormone on Stem Cell Differentiation into Helping Leydig Cells in Testes of Seasonal Breeders</td>
<td></td>
</tr>
<tr>
<td>Darryl Millis</td>
<td>Small Animal Clinical Sciences</td>
</tr>
<tr>
<td>Postoperative Physical Therapy of Orthopedic Patients</td>
<td></td>
</tr>
<tr>
<td>Jack Oliver</td>
<td>Comparative Medicine</td>
</tr>
<tr>
<td>Growth and Reproductive Performance Following Arginine Supplementation of Beef Cattle Grazing in Endophyte-Infected Tall Fescue pastures</td>
<td></td>
</tr>
<tr>
<td>Stephen Oliver</td>
<td>Animal Science</td>
</tr>
<tr>
<td>Detection and Quantification of Antibiotic Resistance Genes and Mobile Genetic Elements in mastitis pathogens and Foodborne pathogens</td>
<td></td>
</tr>
<tr>
<td>Barry Rouse</td>
<td>Pathobiology</td>
</tr>
<tr>
<td>Improvement of Vaccine Using Hsp70 as Antigen Carriers</td>
<td></td>
</tr>
<tr>
<td>Hildegard Schuller</td>
<td>Pathobiology</td>
</tr>
<tr>
<td>Regulatory mechanisms in Lung Cancer</td>
<td></td>
</tr>
<tr>
<td>Terry Schultz</td>
<td>Comparative Medicine</td>
</tr>
<tr>
<td>Development and Use of Nucleophilic Reactivity Indices as a Means of Evaluating Chemicals with Potential to be Used in Local Acts of Terrorism</td>
<td></td>
</tr>
</tbody>
</table>
Carla Sommerdahl
Effects of Oral Levothyroxine on Thyroid Hormone Measure, Cortisol, Lymphocyte Subsets, and Energy Metabolism in Horses
Large Animal Clinical Sciences

C.A. Speer
Diagnosis and Vaccination of Johne’s Disease
Forestry, Wildlife, and Fisheries

Patricia Tithof
Polycyclic Aromatic Hydorcarbons, Arachidonic Acid and Emphysema
Pathobiology

Hwa-Chain Robert Wang
Ras Oncogene-Induced Signaling Pathway Leading to Apoptosis
Pathobiology

Xuemin Xu
Determine the Role of TNF-Receptor-PSAP Death Signaling Pathway in the Pathogenesis of Alzheimer’s Disease
Pathobiology

Start-Up Awards

Seung J. Baek
PPAR-Gamma Ligands in Colorectal Cancer
Pathobiology

Gina Pighetti
Host Mechanisms that Contribute to the Pathogenesis of Streptococcus uberis Mastitis
Animal Science

Howard Plummer
The Role of G1RK in Breast Cancer and its Functional Association with Beta-Adrenergic Mediated Signal Transduction
Pathobiology

Pamela Small
Molecular Pathogenesis of Mycobacterial Infections
Pathobiology
Centers of Excellence/Centers of Emphasis

Actual, Proposed, and Requested Budget

<table>
<thead>
<tr>
<th>Institution</th>
<th>College of Veterinary Medicine</th>
<th>Center of Excellence</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2002-03 Actual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matching</td>
<td>Appropr.</td>
<td>Total</td>
</tr>
<tr>
<td>Expenditures</td>
<td>258,000</td>
<td>516,000</td>
</tr>
<tr>
<td>Salaries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty</td>
<td>9,588</td>
<td>19,176</td>
</tr>
<tr>
<td>Other Professional</td>
<td>28,080</td>
<td>56,161</td>
</tr>
<tr>
<td>Clerical/ Supporting</td>
<td>18,421</td>
<td>36,842</td>
</tr>
<tr>
<td>Assistantships</td>
<td>26,794</td>
<td>53,588</td>
</tr>
<tr>
<td>Total Salaries</td>
<td>82,883</td>
<td>165,767</td>
</tr>
<tr>
<td>Longevity</td>
<td>1,132</td>
<td>2,265</td>
</tr>
<tr>
<td>Total Personnel</td>
<td>101,675</td>
<td>203,352</td>
</tr>
<tr>
<td>Non-Personnel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td>3,198</td>
<td>6,396</td>
</tr>
<tr>
<td>Software</td>
<td>90</td>
<td>179</td>
</tr>
<tr>
<td>Books & Journals</td>
<td>363</td>
<td>727</td>
</tr>
<tr>
<td>Other Supplies</td>
<td>44,834</td>
<td>89,669</td>
</tr>
<tr>
<td>Equipment</td>
<td>24,294</td>
<td>48,588</td>
</tr>
<tr>
<td>Maintenance</td>
<td>11,757</td>
<td>23,515</td>
</tr>
<tr>
<td>Scholarships</td>
<td>513</td>
<td>1,027</td>
</tr>
<tr>
<td>Consultants</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Renovation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other (Specify) Cost</td>
<td>(787)</td>
<td>(1,573)</td>
</tr>
<tr>
<td>Print & Dup</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Communications</td>
<td>273</td>
<td>547</td>
</tr>
<tr>
<td>Rental, Pub, Sp Svc,Ent</td>
<td>10,679</td>
<td>21,359</td>
</tr>
<tr>
<td>Total Non-Personnel</td>
<td>95,217</td>
<td>190,441</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>196,892</td>
<td>393,793</td>
</tr>
</tbody>
</table>

Revenue

<table>
<thead>
<tr>
<th>Institution</th>
<th>College of Veterinary Medicine</th>
<th>Center of Excellence</th>
</tr>
</thead>
<tbody>
<tr>
<td>New State Appropriation</td>
<td>516,000</td>
<td>516,000</td>
</tr>
<tr>
<td>Carryover State Appropriation</td>
<td>80,421</td>
<td>80,421</td>
</tr>
<tr>
<td>New Matching Funds</td>
<td>258,000</td>
<td>258,000</td>
</tr>
<tr>
<td>Carryover from Previous Matching</td>
<td>40,211</td>
<td>40,211</td>
</tr>
<tr>
<td>Total Revenue</td>
<td>298,211</td>
<td>596,421</td>
</tr>
</tbody>
</table>
The University of Tennessee does not discriminate on the basis of race, sex, color, religion, national origin, age, disability, or veteran status in the provision of educational programs and services or employment opportunities and benefits. This policy extends to both employment by and admission to the University. • The University does not discriminate on the basis of race, sex, or disability in the education programs and activities pursuant to the requirements of Title VI of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, Section 504 of the Rehabilitation Act of 1973, and the Americans with Disabilities Act (ADA) of 1990. • Inquiries and charges of violation concerning Title VI, Title IX, Section 504, ADA, The Age Discrimination in Employment Act (ADEA), or any of the other referenced policies should be directed to the Office of Equity and Diversity, 1840 Melrose Avenue, Knoxville, TN 37996-3560; telephone (865) 974-2498 (TTY available). Requests for accommodation of a disability should be directed to the ADA Coordinator at the Office of Human Resources Management; 600 Henley Street, Knoxville, TN 37996-4125.